
Mathematical Induction

• Principle of Mathematical Induction

Let P (n) be a property defined on the integers and
a be a fixed integer.

Suppose the following two statements are true:

1. P (a) is true.

2. For all integers n ≥ a, if P (n) is true then P (n+
1) is true.

Then P (n) is true for all integers n with n ≥ a.

• Mathematical induction is a powerful proof tech-
nique. It is called a principle because it can not
be derived from other facts, but is taken to be an
axiom (of the theory of the natural numbers).



Induction Proofs

• A proof by mathematical induction consists of two
parts:

1. Induction basis

Show that P (a) is true.

2. Inductive step

Show that for all integers n ≥ a, P (n + 1)
is true whenever P (n) is true.

• The inductive step requires a proof of

∀n ∈ Z, [n ≥ a → (P (n) → P (n+1))].

• For this purpose it is sufficient to show that

P (k) → P (k + 1)

is true for an arbitrary but fixed integer k with k ≥ a.

• The proof of this conditional statement typically
proceeds in two steps:

– Assume that P (k) is true.

– Show that P (k + 1) is true.

• The assumption, that P (k) is true, is called the
inductive hypothesis.



Example: Sum of Integers

• Let P (n) be the property,

1 + 2+ · · ·+ n =
n(n+ 1)

2
.

We use mathematical induction to prove that P (n)
is true for all integers n ≥ 1.

• Basis step

If n = 1, then both sides of the equation evaluate
to 1. Thus P (1) is true.

• Inductive step

Let k be an arbitrary but fixed integer with k ≥ 1.

We assume, as inductive hypothesis, that P (k) is
true,

1 + 2+ · · ·+ k =
k(k +1)

2
.

We need to show that P (k +1) is true,

1 + 2+ · · ·+ k + (k +1) =
(k +1)((k +1)+ 1)

2
.



We can prove P (k+1) using basic algebra and the
inductive hypothesis:

1 + 2+ · · ·+ k + (k + 1)
= (1+ 2+ · · ·+ k) + (k +1)
= k(k + 1)/2+ (k + 1) (by I.H.)
= k(k + 1)/2+ 2(k + 1)/2
= (k + 2)(k + 1)/2
= (k + 1)((k + 1)+ 1)/2



Example: Sum of Squares

• Let P (n) be the property that

1 + 4+ · · ·+ n2 = n(n+1)(2n+1)/6.

We use induction to prove that P (n) is true for all
integers n ≥ 1.

• Basis step

If n = 1, then both sides of the equation evaluate
to 1,

12 = 1 = (1 · 2 · 3)/6.
Thus P (1) is true.

• Inductive step

Let k be an arbitrary but fixed integer with k ≥ 1.
We assume, as inductive hypothesis, that P (k) is
true,

1 + 4+ · · ·+ k2 = k(k +1)(2k +1)/6,

and need to show that P (k +1) is true,

1+4+ · · ·+k2+(k+1)2 = (k+1)(k+2)(2k+3)/6.



The key step in the proof is again the application
of the inductive hypothesis:

1 + 4+ · · ·+ k2 + (k + 1)2

= (1+ 4+ · · ·+ k2) + (k +1)2

= k(k +1)(2k +1)/6+ (k +1)2 (by I.H.)
= (k +1)(2k2 + k)/6+ (k +1)6(k +1)/6
= (k +1)[(2k2 + k) + 6(k + 1)]/6
= (k +1)(2k2 + 7k + 6)/6
= (k +1)(k +2)(2k +3)/6



Example: An Inequality

• Let P (n) be the property

2n+1 < 2n.

We use mathematical induction to prove that P (n)
is true for all n ≥ 3.

• Basis step

If n = 3, then

2n+1 = 2 ∗ 3+ 1 = 7 < 8 = 23 = 2n.

Thus P (3) is true.

• Inductive step

Let k be an arbitrary but fixed integer with k ≥ 3.
We assume, as inductive hypothesis, that P (k) is
true,

2k +1 < 2k,

and need to show that P (k +1) is true,

2(k +1)+ 1 < 2k+1.

We have

2(k +1)+ 1 = (2k + 2)+ 1
= (2k + 1)+ 2
< 2k + 2 (by I.H.)
< 2 ∗ 2k

= 2k+1

which completes the proof.



Example: Another Inequality

• Let P (n) be the property

2n > n3.

We use mathematical induction to prove that P (n)
is true for all n ≥ 10.

• Basis step

If n = 10, then 2n = 210 = 1024 and n3 = 103 =
100. Thus P (10) is true.

• Inductive step

Let k be an arbitrary but fixed integer with k ≥ 10.
We assume, as inductive hypothesis, that P (k) is
true,

2k > k3,

and have to show that P (k +1) is true,

2k+1 > (k + 1)3.

We have

2k+1 = 2 ∗ 2k

> 2 ∗ k3 (by I.H.)
= k3 + k3

> k3 +7k2 (because k ≥ 10)
> k3 +3k2 +3k +1 (because k ≥ 10)
= (k + 1)3

which completes the proof.



Example: Divisibility

• Let P (n) be the property

2n+2 +32n+1 is divisible by 7.

We prove that P (n) is true for all integers n ≥ 0.

• Basis step

If n = 0, then

2n+2 +32n+1 = 22 + 31 = 4+ 3 = 7,

which indicates that P (0) is true.

• Inductive step

Let k be an arbitrary, but fixed nonnegative integer.
We assume, as inductive hypothesis, that P (k) is
true. That is, 2k+2 + 32k+1 is divisible by 7, or
equivalently,

2k+2 + 32k+1 = 7j,

for some integer j.

We have to show that 2(k+1)+2+32(k+1)+1 is divisible
by 7.



In detail:

2(k+1)+2 + 32(k+1)+1

= 2k+3 + 32k+3

= 2k+3 + 9 ∗ 32k+1

= (2k+3 + 2 ∗ 32k+1) + 7 ∗ 32k+1

= 2(2k+2 + 32k+1) + 7 ∗ 32k+1

= 2(7j) + 7 ∗ 32k+1 (by I.H.)
= 7(2j + 32k+1)



Another Example

• Let P (n) be the property

a ≤ b → an ≤ bn

where a and b are nonnegative real numbers. We
prove that P (n) is true for all integers n ≥ 0.

• Basis step

Since a0 = 1 ≤ 1 = b0 the property P (0) is trivially
true.

• Inductive step

Let k be an arbitrary, but fixed nonnegative integer.

We assume, as inductive hypothesis, that P (k) is
true,

a ≤ b → ak ≤ bk,

and have to show that P (k +1) is also true,

a ≤ b → ak+1 ≤ bk+1.

To prove the conditional statement P (k + 1) we
assume

(1) a ≤ b

and then need to show ak+1 ≤ bk+1.



From the inductive hypothesis and (1) we may infer

(2) ak ≤ bk

by Modus Ponens. Since a is nonnegative, we get

(3) a ∗ ak ≤ a ∗ bk

from (2). Since bk is nonnegative, we also get

(4) a ∗ bk ≤ b ∗ bk

from (1). Putting (3) and (4) together, we obtain
the desired conclusion,

ak+1 = a ∗ ak ≤ b ∗ bk = bk+1.



Strong Mathematical Induction

• Principle of Strong Mathematical Induction

Let P (n) be a property defined on the integers and
a be a fixed integer.

Suppose for all integers n ≥ a the following condi-
tional statement is true:

If P (j) is true for all integers with a ≤ j < n,
then P (n) is true.

Then P (n) is true for all natural numbers n with
n ≥ a.

• Strong mathematical induction requires a proof of
the following formula:

∀n ∈ Z, [n ≥ a →
(∀j ∈ Z, (a ≤ j < n → P (j)) → P (n))]

• For this purpose it is sufficient to show that, for an
arbitrary but fixed integer k with k ≥ a, if

∀j ∈ Z, (a ≤ j < k → P (j))

is true, then P (k) is also true.

• The formula

∀j ∈ Z, (a ≤ j < k → P (j))

is called the inductive hypothesis.



Divisibility by a Prime

• Let P (n) be the property that

n is divisible by a prime number.

We use strong mathematical induction to prove
that P (n) is true for all integers n with n ≥ 2.

• Let k be an arbitrary, but fixed nonnegative integer
with k ≥ 2. We have to prove

∀j ∈ Z, (2 ≤ j < k → P (j)) → P (k).

We assume, as inductive hypothesis, that

∀j ∈ Z, (2 ≤ j < k → P (j))

is true and have to show that P (k) is true.

We distinguish two cases.

– If k is a prime number, then P (k) is obviously
true because every number divides itself.

– If k is not a prime number, then it is a product
k = s ∗ t of two integers s and t, such that
1 < s < k and 1 < t < k.

By the inductive hypothesis, t is divisible by a
prime number. By the transitivity of divisibility,
k is also divisible by a prime.

We have shown that in either case k is divisible by
a prime number, which completes the proof.



Fibonacci Numbers

• The Fibonacci numbers are defined recursively by:

Fn =







1 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1

• Let φ be the number (1 +
√
5)/2 and P (n) be the

property that

Fn ≤ φn.

We use strong mathematical induction to prove
that P (n) is true for all nonnegative integers n.

• The proof will be in three parts.

– If n = 0, then Fn = F0 = 1 = φ0 = φn. Thus
P (0) is true.

– If n = 1, then Fn = F1 = 1 < 3/2 < (1 +√
5)/2 = φ = φn. Thus P (1) is true.

– Let k be an arbitrary but fixed integer with k ≥
2. We assume, as inductive hypothsis, that P (j)
is true for all j with 0 ≤ j < k, and have to show
that P (k) is true.



In detail,

Fk = Fk−1 + Fk−2 (by def. of Fk)
≤ φk−1 + φk−2 (from I.H.)
= φk−2(φ+ 1)
= φk−2φ2 (see below)
= φk

Note that

φ2 = (6+ 2
√
5)/4 = (3+

√
5)/2

= 1+ (1+
√
5)/2 = 1+ φ.

This completes the proof.



The Tower of Hanoi

• The tower of Hanoi consists of a fixed number of
disks stacked on a pole in decreasing size, that is,
with the smallest disk at the top.

1 2 3

• There are two other poles and the task is to trans-
fer all disks from the first to the third pole, one at
a time without ever placing a larger disk on top of
a smaller one.

1 2 3

• There is an elegant solution to this problem by re-
cursion.



Solution: Tower of Hanoi

• First observe that the largest disk can only be moved
if all smaller disks are stacked on a single pole:

1 2 3

• This suggests the following solution for moving a
tower of n disks from any pole a to any other pole
b (with c being the third pole):

– First transfer the stack of n − 1 smaller disks
from a to c.

– Then move the largest disks from a to b.

– Finally transfer the stack of n− 1 smaller disks
from c to b.

• The minimum number of moves required to transfer
n disks from one pole to another pole can thus be
defined recursively as follows:

M(1) = 1 and

M(n) = 2M(n− 1) + 1 if n > 1



Number of Moves

• Let P (n) be the property that

M(n) = 2n − 1.

We use mathematical induction to prove that P (n)
is true for all n ≥ 1.

• Since M(1) = 1 = 21−1 we know that P (0) is true.

• Let k be an arbitrary but fixed integer with k > 1.
We assume, as inductive hypothsis, that P (j) is
true for all j with 1 ≤ j < k, and show that P (k) is
true.

In detail,

M(k) = 2 ∗M(k − 1) + 1 (by def. of M(k))
= 2 ∗ (2k−1 − 1) + 1 (by I.H.)
= (2k − 2) + 1
= 2k − 1


