Mathematical Induction

e Principle of Mathematical Induction

Let P(n) be a property defined on the integers and
a be a fixed integer.

Suppose the following two statements are true:
1. P(a) is true.

2. For all integers n > a, if P(n) is true then P(n+
1) is true.

Then P(n) is true for all integers n with n > a.

e Mathematical induction is a powerful proof tech-
nique. It is called a principle because it can not
be derived from other facts, but is taken to be an
axiom (of the theory of the natural numbers).



Induction Proofs

e A proof by mathematical induction consists of two
parts:

1. Induction basis
Show that P(a) is true.

2. Inductive step
Show that for all integers n > a, P(n+ 1)

is true whenever P(n) is true.
e T he inductive step requires a proof of

VneZ,[n>a— (P(n) - P(n+1))].

e For this purpose it is sufficient to show that
P(k) - P(k+1)
IS true for an arbitrary but fixed integer k with k£ > a.
e The proof of this conditional statement typically
proceeds in two steps:
— Assume that P(k) is true.
— Show that P(k+ 1) is true.

e The assumption, that P(k) is true, is called the
inductive hypothesis.



Example: Sum of Integers

e Let P(n) be the property,

n(n 4+ 1).

14+24---+n= 5

We use mathematical induction to prove that P(n)
is true for all integers n > 1.

e Basis step

If n = 1, then both sides of the equation evaluate
to 1. Thus P(1) is true.

e Inductive step
Let £ be an arbitrary but fixed integer with k£ > 1.

We assume, as inductive hypothesis, that P(k) is
true,

We need to show that P(k+ 1) is true,
(k+1)((E+1)+1)

142+ +k+(k+1) = 5



We can prove P(k+ 1) using basic algebra and the
inductive hypothesis:

1424kt (k1)

(L+24- k) + (k4 1)
k(k+1)/2+ (k+ 1) (by LH.)
k(k+1)/2+2(k+1)/2

(k4 2)(k+1)/2

(k4 1)((k4+1) +1)/2



Example: Sum of Squares

e Let P(n) be the property that
1+4+---+n°=n(n+1)(2n+1)/6.

We use induction to prove that P(n) is true for all
integers n > 1.

e Basis step

If n = 1, then both sides of the equation evaluate
to 1,

1°=1=(1-2-3)/6.
Thus P(1) is true.

e Inductive step

Let k£ be an arbitrary but fixed integer with £ > 1.
We assume, as inductive hypothesis, that P(k) is
true,

1444 +k =k(k+1)(2k+1)/6,
and need to show that P(k+ 1) is true,
1+4+- - +k°+(k+1)% = (k+1)(k+2)(2k+3) /6.



The key step in the proof is again the application
of the inductive hypothesis:

L+44- k24 (k4 1)°

(1+4+ 4+ k%) + (k4 1)2
k(k+1)(2k+1)/6 4+ (k + 1)2 (by I.H.)
(k+1)(2k2+k)/6 + (k+1)6(k+1)/6

(k+ 1)[(2k%2 4+ k) + 6(k+ 1)]/6

(k+1)(2k2+ 7k +6)/6

(k+1)(k+2)(2k+3)/6



Example: An Inequality

e Let P(n) be the property
2n + 1 < 2",

We use mathematical induction to prove that P(n)
is true for all n > 3.

e Basis step
If n = 3, then
2n+1=2%x3+1=7<8=2%3=2"
Thus P(3) is true.

e Inductive step

Let £ be an arbitrary but fixed integer with k£ > 3.
We assume, as inductive hypothesis, that P(k) is
true,

2k 4+ 1 < 2%,
and need to show that P(k+ 1) is true,

2(k+1) +1 < 2~

We have
2k+1)+1 = (2k+2)+1
= (2k+1)+2
< 242 (by I.H.)
< 2% 2k
— 2k+1

which completes the proof.



Example: Another Inequality

e Let P(n) be the property
2" > n3.

We use mathematical induction to prove that P(n)
is true for all n > 10.

e Basis step

If n = 10, then 2" = 210 = 1024 and n3 = 103 =
100. Thus P(10) is true.

e Inductive step

Let £ be an arbitrary but fixed integer with k£ > 10.
We assume, as inductive hypothesis, that P(k) is
true,

2F > k3,
and have to show that P(k+ 1) is true,
2kt > (k4 1)3.

We have
okl = 2% 2k
> 2% k3 (by I.H.)
— k3—|—k3
> k34 T7k? (because k£ > 10)
> k3+3k°+3k+1 (because k> 10)
= (k4 1)3

which completes the proof.



Example: Divisibility

e Let P(n) be the property
ont+2 4 32n+1 g divisible by 7.
We prove that P(n) is true for all integers n > 0.

e Basis step
If n = 0, then

2n-|—2_|_32n-|—1 :22_|_31 :4+3:7’
which indicates that P(0) is true.

e Inductive step

Let £ be an arbitrary, but fixed nonnegative integer.
We assume, as inductive hypothesis, that P(k) is
true. That is, 2Ft2 4 32k+1 js divisible by 7, or
equivalently,

2k¢—|—2 _"_ 32k—|—1 — 7]’

for some integer j.

We have to show that 2(k+1)+24 32(k+1)+1 j5 djvisible
by 7.



In detail:

~(k+1)+2 + 32(k+1)+1

2k—|—3 _|_ 32k—|—3

2k—|—3 _l_ O x 32k+1

(2k:—l—3 + 2« 32k:+1) + 7 % 32k+1
2(2k—|—2 + 32k—l—1) + 7 * 32k+1
2(75) + 7+ 3%t (by I.H.)
7(2) + 37D



Another Example

e Let P(n) be the property
a<b—a"<b"

where a and b are nonnegative real numbers. We
prove that P(n) is true for all integers n > 0.

e Basis step

Since a® =1 <1 = b° the property P(0) is trivially
true.

e Inductive step
Let £ be an arbitrary, but fixed nonnegative integer.

We assume, as inductive hypothesis, that P(k) is
true,

a<b—ad <bF
and have to show that P(k+ 1) is also true,

a<b-— gt <prtl.

To prove the conditional statement P(k 4+ 1) we
assume

(1) a<b

and then need to show a1 < prtl,



From the inductive hypothesis and (1) we may infer
(2) a* < b*

by Modus Ponens. Since a is nonnegative, we get
(3) a*xaf <axbF

from (2). Since b* is nonnegative, we also get
(4) a* b <bxbk

from (1). Putting (3) and (4) together, we obtain
the desired conclusion,

afTt = axab < bx bk = bFtl,



Strong Mathematical Induction

e Principle of Strong Mathematical Induction

Let P(n) be a property defined on the integers and
a be a fixed integer.

Suppose for all integers n > a the following condi-
tional statement is true:

If P(4) is true for all integers with a < j < n,
then P(n) is true.

Then P(n) is true for all natural numbers n with
n > a.

e Strong mathematical induction requires a proof of
the following formula:

VneZ,[n>a—
(Vi€Z,(a<j<n— P@{)) — P(n))l

e For this purpose it is sufficient to show that, for an

arbitrary but fixed integer k with k > a, if
Vi€Z,(a<j<k— P())

is true, then P(k) is also true.

e [ he formula
VieZ,(a<j<k— P(j))
is called the inductive hypothesis.



Divisibility by a Prime

e Let P(n) be the property that
n IS divisible by a prime number.

We use strong mathematical induction to prove
that P(n) is true for all integers n with n > 2.

e Let k£ be an arbitrary, but fixed nonnegative integer
with £ > 2. We have to prove

VieZ,(2<j<k—P(j)) — P(k).
We assume, as inductive hypothesis, that
Vi€Z,(2<j<k— P())
is true and have to show that P(k) is true.
We distinguish two cases.

— If k is a prime number, then P(k) is obviously
true because every number divides itself.

— If k is not a prime number, then it is a product
k = sxt of two integers s and t, such that
l<s<kand 1 <t<k.

By the inductive hypothesis, t is divisible by a
prime number. By the transitivity of divisibility,
k is also divisible by a prime.

We have shown that in either case k is divisible by
a prime number, which completes the proof.



Fibonacci Numbers

e T he Fibonacci numbers are defined recursively by:

1 ifn=20
F, = 1 ifn=1
F, 1+ F,»> ifn>1

o Let ¢ be the number (1 ++/5)/2 and P(n) be the
property that
F, < ¢".

We use strong mathematical induction to prove
that P(n) is true for all nonnegative integers n.

e [ he proof will be in three parts.

— Ifn=0, then F, = Fp =1 = ¢° = ¢*. Thus
P(0) is true.

—Ifn=1 then F, = F; = 1 < 3/2 < (1 +
V5)/2 = ¢ = ¢™. Thus P(1) is true.

— Let k be an arbitrary but fixed integer with k£ >
2. We assume, as inductive hypothsis, that P(y)
is true for all 5 with 0 < 5 < k, and have to show
that P(k) is true.



In detall,

F, = Fp_ 1+ Fr_» (by def. of Fk)
< oF 4+ o2 (from I.H.)
= ¢ 2(p+1)
= ¢ 292 (see below)
= "
Note that
9> = (6+2V5)/4 = (34++V5)/2
= 1+(1+VB)/2 = 1+4

This completes the proof.



The Tower of Hanoi

e T he tower of Hanoi consists of a fixed number of
disks stacked on a pole in decreasing size, that is,
with the smallest disk at the top.

T

e T here are two other poles and the task is to trans-
fer all disks from the first to the third pole, one at
a time without ever placing a larger disk on top of
a smaller one.

e T here is an elegant solution to this problem by re-
cursion.



Solution: Tower of Hanoi

e First observe that the largest disk can only be moved
if all smaller disks are stacked on a single pole:

1 2 3

e T his suggests the following solution for moving a
tower of n disks from any pole a to any other pole
b (with ¢ being the third pole):

— First transfer the stack of n — 1 smaller disks
from a to c.

— Then move the largest disks from a to b.

— Finally transfer the stack of n — 1 smaller disks
from ¢ to b.

e T he minimum number of moves required to transfer
n disks from one pole to another pole can thus be
defined recursively as follows:

M(1) = 1 and
M) = 2M(n—-1)+1ifn>1



Number of Moves

e Let P(n) be the property that
M(n) =2" — 1.

We use mathematical induction to prove that P(n)
is true for all n > 1.

e Since M(1) =1 =2'—1 we know that P(0) is true.

e Let k£ be an arbitrary but fixed integer with k£ > 1.
We assume, as inductive hypothsis, that P(j) is
true for all j with 1 < j < k, and show that P(k) is
true.

In detail,

M (k) 2%« M(k—1)41 (by def. of M(k))
2% (21 _1)+1 (by ILH.)
(2F—2)+1

2k 1



