TEACHER SEGMENT→ List of Formulae

Chapter 1 – Real Numbers

First Law:
$$\log_a xy = \log_a x + \log_a y$$

Second Law:
$$\log_a x^m = m \log_a x$$

Third Law:
$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

Chapter 3 - Polynomials

► If α and β are the zeroes of the quadratic polynomial $ax^2 + bx + c$, $a \ne 0$, then $\alpha + \beta = -\frac{b}{2}, \ \alpha\beta = \frac{c}{2}$

ightharpoonup If α, β and γ are the zeroes of the quadratic polynomial $ax^3 + bx^2 + cx + d$, a ≠ 0, then $\alpha + \beta + \gamma = -\frac{b}{a}$,

$$\alpha + \beta + \gamma = -\frac{1}{a},$$

$$\alpha \beta + \beta \gamma + \gamma \alpha = \frac{c}{a},$$

$$\alpha \beta \gamma = -\frac{d}{a}$$

If α and β are the zeroes of a polynomial then the obtained polynomial is $x^2 - (\alpha + \beta)x + \alpha\beta$

- The division algorithm states that given any polynomial p(x) and any non-zero polynomial g(x), there are polynomials q(x) and r(x) such that $p(x) = g(x) \times q(x) + r(x)$
- ➤ Relationship between zeroes and coefficients of a quadratic polynomial:
 - Sum of zeroes = -b/a = (coefficient of x)/(coefficient of x^2)
 - Product of zeroes = $c/a = (constant term)/(coefficient of x^2)$
- > Relationship between zeroes and coefficients of a cubic polynomial:
 - Sum of zeroes = -b/a = (coefficient of x^2)/(coefficient of x^3)
 - Product of zeroes = $c/a = (constant term)/(coefficient of x^3)$

Chapter 5 – Quadratic Expressions

- ightharpoonup Quadratic formula : $\frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- \rightarrow Discriminant: $b^2 4ac$

Chapter 6 – Progressions

- \triangleright nth term of an AP is : a_n = a + (n 1)d
- > Sum of n terms of an AP is: $S_n = \frac{n}{2}(2a + (n-1)d)$
- If the first and last terms of an AP are given and common difference is not given then $S_{n} = \frac{n}{2}(a + a_{n})$
- > Sum of first n positive integers : $S_n = \frac{n(n+1)}{2}$
- \triangleright The general form of GP is : a, ar, ar², ar³.....
- \triangleright nth terms of GP: a_n = arⁿ⁻¹

Chapter 7 – Coordinate Geometry

- \triangleright Distance between two points: $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- > Section formula: $P(x,y) = \left(\frac{m_{_{1}}X_{_{2}} + m_{_{2}}X_{_{1}}}{m_{_{1}} + m_{_{2}}}, \frac{m_{_{1}}y_{_{2}} + m_{_{2}}y_{_{1}}}{m_{_{1}} + m_{_{2}}}\right)$
- ightharpoonup Midpoint of a line segment = $\left(\frac{X_1 + X_2}{2}, \frac{y_1 + y_2}{2}\right)$
- > Centroid of a triangle = $\left(\frac{X_1 + X_2 + X_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$
- > Area of a triangle = $\frac{1}{2} |x_1(y_2 y_3) + x_2(y_3 y_1) + x_3(y_1 y_2)|$
- Heron's formula of area of a triangle : $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$ where s is $s = \frac{a+b+c}{2}$
- Slope of a line joining two points : $m = \frac{y_2 y_1}{x_2 x_1}$

Chapter 9 – Tangents and Secants to a Circle

- \triangleright Area of a rectangle: $A = I \times b$
- \triangleright Area of square: A = S²

$$A = \frac{1}{2}bh$$

- > Area of triangle:
- \triangleright Area of circle: $A = \pi r^2$
- \triangleright Area of sector when degree measure of the angle at the centre is x° :

$$\frac{x^{\circ}}{360^{\circ}} \times \pi r^{2}$$

$$ightharpoonup$$
 Area of semicircle: $\frac{\pi r^2}{2}$

$$ightharpoonup$$
 Area of hexagon: $6 \times \frac{\sqrt{3}}{4} a^2$

Chapter 11 – Trigonometry

$$\sin A = \frac{\text{opposite side}}{\text{hypotenuse}}$$

$$\cos A = \frac{\text{adjacent side}}{\text{hypotenuse}}$$

$$\tan A = \frac{\text{opposite side}}{\text{adjacent side}}$$

$$\csc A = \frac{\text{hypotenuse}}{\text{opposite side}}$$

$$\sec A = \frac{\text{hypotenuse}}{\text{adjacent side}}$$

$$\cot A = \frac{\text{adjacent side}}{\text{opposite side}}$$

$$\cos \cot \theta = \frac{1}{\sin \theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\tan \theta = \frac{1}{\cot \theta}$$

$$cos^2 A + sin^2 A = 1$$

 $1 + tan^2 A = sec^2 A$
 $cot^2 A + 1 = cos ec^2 A$

$$\sin(90^{\circ} - x) = \cos x$$

$$\cos(90^{\circ} - x) = \sin x$$

$$\tan(90^{\circ} - x) = \cot x$$

$$\cot(90^{\circ} - x) = \tan x$$

$$\csc(90^{\circ} - x) = \sec x$$

$$\sec(90^{\circ} - x) = \csc x$$

Chapter 13 – Probability

- > Probability of an event : $P(E) = \frac{number of favorable outcomes}{total number of outcomes}$
- \triangleright Range of probability is $0 \le P \le 1$.
- \triangleright Probability of a complementary event E is : $P(E) + p(\overline{E}) = 1$

Chapter 14 – Statistics

 $class mark = \frac{upper class limit + lower class limit}{}$

The direct method:
$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$$

Median =
$$1 + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$$

Assumed mean method:
$$x = a + \frac{\sum f_i d}{\sum f_i}$$

$$Mode = l + \left(\frac{f_{1} - f_{0}}{2f_{1} - f_{0} - f_{2}}\right) \times h$$

Assumed mean method : $x = a + \frac{\sum f_i d_i}{\sum f_i}$ Step-deviation method : $\overline{x} = a + \left\{ \frac{\sum f_i u_i}{\sum f_i} \right\} \times h$