
Generating Functions

If you take f(x) = 1/(1 − x − x2) and expand it as a power series by long division, say,

then you get f(x) = 1/(1−x−x2) = 1+x+2x2 +3x3 +5x4 +8x5 +13x6 + · · ·. It certainly

seems as though the coefficient of xn in the power series is the n-th Fibonacci number.

This is not difficult to prove directly, or using techniques discussed below. You can think

of the process of long division as generating the coefficients, so you might want to call

1/(1 − x − x2) the generating function for the Fibonacci numbers. The actual definition

of generating function is a bit more general. Since the closed form and the power series

represent the same function (within the circle of convergence), we will regard either one

as being the generating function.

Definition of generating function. The generating function for the sequence a0, a1, . . .

is defined to be the function f(x) =
∑∞

n=0 anxn.

That is, the generating function for the sequence a0, a1, . . . is the function whose power

series representation has an as the coefficient of xn. We’ll call a0, a1, . . . the sequence

generated by f(x). We will not be concerned with matters of convergence, and instead

treat these as formal power series. Perhaps “symbolic” would be a better word than

formal.

When determining the sequence generated by a generating function, you will want to get

a formula for the n-the term (that is, for the coefficient of xn), rather than just computing

numerical values for the first few coefficients.

Useful facts.

• If x �= 1 then 1+x+x2 + · · ·+xr = xr+1−1
x−1 (although it is often best not to do anything

with sums of only a few terms).

• 1
1−x = 1 + x + x2 + · · ·.

Both of these facts can be proved by letting S be the sum, calculating xS − S, and doing

a little bit of algebra.

The second fact above says that 1
1−x is the generating function for the sequence 1, 1, 1, 1, . . ..

It also lets you determine the sequence generated by many other functions. For example:

• 1
1−ax = 1 + a + a2x2 + a3x3 + · · · =

∑∞
n=0 anxn. To see this, substitute y = ax

into the series expansion of 1
1−y . Thus 1

1−ax is the generating function for the sequence

a0, a1, a2, . . .. The coefficient of xn is an.
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• 1
1+ax = 1− a + a2x2 − a3x3 + · · · =

∑∞
n=0(−1)nanxn. To see this, substitute y = (−a)x

into the series expansion of 1
1−y . Thus 1

1+ax is the generating function for the sequence

a0,−a1, a2, . . .. The coefficient of xn is (−a)n = (−1)nxn.

More useful facts.

•
(

1
1−x

)k =
∑∞

n=0

(
n+k−1

n

)
xn.

•
(

1
1−ax

)k =
∑∞

n=0

(
n+k−1

n

)
anxn.

•
(

1
1+ax

)k =
∑∞

n=0(−1)n
(
n+k−1

n

)
anxn.

To see the first of these, consider the LHS, (1 + x + x2 + · · ·)k, multiplied out, but not

simplified, Each term is a product of k (possibly different) powers of x (remembering

that x0 = 1). By the rules of exponents, xn1xn2 · · ·xnk = xn1+n2+···+nk . Thus, after

simplifying, there is a term xn for every way of expressing n as a sum of k numbers each

of which is one of 0, 1, 2, . . .. That is, the number of terms xn equals the number of integer

solutions to n1 + n2 + · · · + nk = n, 0 ≤ ni, ∀i. We know that this number is
(
n+k−1

k−1

)

(count using “bars and stars”).

To see the second fact, let y = ax in
(

1
1−y

)k. (This is the same idea as before.) To see the

third fact, let let y = −ax in
(

1
1−y

)k.

Multiplying a generating function by a constant multiplies every coefficient by that con-

stant. For example, 3
1+5x = 3 1

1+5x = 3(1− 5x + 52x2 − 53x3 + · · ·) = 3− 3 · 5x + 3 · 52x2 −
3 · 53x3 + · · · =

∑∞
n=0 3 · (−1)n5nxn. The coefficient of xn is 3 · (−1)n5n.

Multiplying a generating function by xk “shifts” the coefficients by k. This has the effect

of introducing k zeros at the start of the sequence generated. For example,(
x

1+7x

)4 = x4
(

1
1+7x

)4

= x4
∑∞

n=0(−1)n
(
n+4−1

n

)
7nxn

=
∑∞

n=0(−1)n
(
n+4−1

3

)
7nxn+4

=
∑∞

t=4(−1)t−4
(
t−1
3

)
7t−4xt.

(Let t = n + 4 in the second last sum. If n = 0 then t = 4, so that gives the lower limit

for the sum. If n → ∞, so does t, which gives the upper limit. And n = t − 4.) Since

(−1)t−4 = (−1)t, the last sum equals:
∑∞

t=4(−1)t
(
t−1
3

)
7t−4xt. The coefficient of xt is zero

if t < 4, and (−1)t
(
t−1
3

)
7t−4 if t ≥ 4.

If you add two generating functions together, the coefficient of xn in the sum is what you

would expect, the sum of the coefficients of xn in the summands. For example, adding the

generating functions from the above two paragraphs gives:
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3
1+5x +

(
x

1+7x

)4

=
∑∞

n=0 3(−1)n5nxn +
∑∞

n=4(−1)n
(
n−1

3

)
7n−4xn

= 3 − 3(51)x + 3(52)x2 − 3(53)x3 +
∑∞

n=4

(
3(−1)n5n + (−1)n

(
n−1

3

)
7n−4

)
xn

= 3 − 3(51)x + 3(52)x2 − 3(53)x3 +
∑∞

n=4(−1)n
(
3 · 5n +

(
n−1

3

)
7n−4

)
xn.

Thus, if n ≤ 3, the coefficient of xn is 3(−1)n5n, and if n ≥ 4 it is (−1)n
(
3·5n+

(
n−1

3

)
7n−4

)
.

The above describes most of the basic tools you need. When trying to determine what

sequence is generated by some generating function, your goal will be to write it as a sum

of known generating functions, some of which may be multiplied by constants, or constants

times some power of x. Once you’ve done this, you can use the techniques above to

determine the sequence. Most of the time the known generating functions are among

those described above. Occasionally you may need to directly compute the product of two

generating functions:

Cauchy Product.(∑∞
n=0 anxn

)(∑∞
n=0 bnxn

)

= a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x2 + · · ·
=

∑∞
n=0

(∑n
k=0 akbn−k

)
xn

To see this, carry out the multiplication and simplify.

The last tool you will need allows you to write a product of (known) generating functions

as a sum of known generating functions, some of which may be multiplied by constants, or

constants times some power of x. It is the method of partial fractions, which you should

have learned while studying Calculus. We will do a couple of examples in the course of

this section, but won’t give a comprehensive treatment of the method. For more info, look

in (almost) any Calculus textbook.

Example 1. What sequence is generated by 2+x
1−x−8x2+12x3 ?

The first task is to factor the denominator. We want to write it as a product of terms of

the form (1 − ax). Since the constant term is 1, if the a’s are all integers then they are

among the divisors of the coefficient of the highest power of x, and their negatives. (This

is similar to the hints for finding integer roots of polynomials discussed in the section on

solving recurrences. To see it, imagine such a factorisation multiplied out and notice how

the coefficient of the highest power of x arises.) Here, we find that 1 − x − 8x2 + 12x3 =

(1 + 3x)(1 − 2x)2. Thus, we want to use partial fractions to write 2+x
(1+3x)(1−2x)2 as a sum
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of “known” generating functions. These arise from the factors in the denominator. Using

partial fractions
2+x

(1+3x)(1−2x)2 = A
1+3x + B

1−2x + C
(1−2x)2

= A(1−2x)2+B(1+3x)(1−2x)+C(1+3x)
(1+3x)(1−2x)2

Thus, 2 + x = A(1 − 2x)2 + B(1 + 3x)(1 − 2x) + C(1 + 3x). Expanding the RHS and

equating like powers of x on the LHS and RHS gives

A + B + C = 2, −4A + B + 3C = 1, 4A − 6B = 0

The solution is A = 3/5, B = 2/5, C = 1. Therefore,
2+x

(1+3x)(1−2x)2 = (3/5) 1
1+3x + (2/5) 1

1−2x +
(

1
1−2x

)2.

The coefficient of xn on the RHS is (3/5)(−1)n3n + (2/5)2n +
(
n+1

n

)
2n = (3/5)(−1)n3n +

(2/5)2n + (n + 1)2n. Thus the sequence generated is (3/5)(−1)n3n + (2/5)2n + (n + 1)2n.

Deriving generating functions from recurrences. If you are given a sequence defined

by a recurrence relation and initial conditions, you can use these to get a generating

function for the sequence. Having done that, you can then apply the facts and methods

above to get a formula for the n-th term of the sequence. This is another method of

solving recurrences. We’ll illustrate the method first, and then try to give a description

of it below. It would be wise to work through the example twice: once before reading the

description of the method, and once after. That way you should be able to recognize (and

understand) the major steps.

Example 2. Find the generating function for the sequence an defined by an = an−1 +

8an−2 − 12an−3, n ≥ 3, with initial conditions a0 = 2, a1 = 3, and a3 = 19.

Let g(x) =
∑∞

n=0 anxn

= 2 + 3x + 19x2 +
∑∞

n=3 anxn

= 2 + 3x + 19x2 +
∑∞

n=3(an−1 + 8an−2 − 12an−3)xn

= 2 + 3x + 19x2 +
∑∞

n=3 an−1x
n +

∑∞
n=3 8an−2x

n − ∑∞
n=3 12an−3x

n

= 2 + 3x + 19x2 + x
∑∞

n=3 an−1x
n−1 + 8x2

∑∞
n=3 an−2x

n−2 − 12x3
∑∞

n=3 an−3x
n−3

= 2 + 3x + 19x2 + x
∑∞

k=2 akxk + 8x2
∑∞

k=1 akxk − 12x3
∑∞

k=0 akxk

= 2+3x+19x2+
(
x

∑∞
k=0 akxk

)
−x(2+3x)+8x2

(∑∞
k=0 akxk

)
−8x2(2)−12x3

∑∞
k=0 akxk

= 2 + x + xg(x) + 8x2g(x) − 12x3g(x).

Therefore g(x)−xg(x)−8x2g(x)−12xxg(x) = 2+x. That is, g(x)(1−x−8x2−12x3) = 2+x,

so g(x) = 2+x
1−x−8x2−12x3 is the generating function. You can now apply the method in

Example 1 (since this is the generating function from Example 1) to find that an =

(3/5)(−1)n3n + (2/5)2n + (n + 1)2n.
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The main idea is to let g(x) be the generating function, say g(x) =
∑∞

n=0 anxn, and then

use the recurrence, initial conditions, manipulation of the sum(s), and algebra to convert

the RHS into an expression which is a sum of terms some of which involve g(x) itself. The

following steps are usually involved (and in this order):

(1) Split the terms corresponding to the initial values from the sum on the RHS. The sum

should then run from the first integer for which the recursive definition takes effect.

(2) Substitute the recursive definition of an into the summation.

(3) Split the sum into several sums, and in each one factor out the constant times a high

enough power of x so that the subscript on the coefficient and the exponent of x are equal.

(4) Make a change of variable in each summation so each is the sum of anxn from some

value to infinity. One of the sums should start at 0, another at one, and so on, until finally

one starts at the subscript of the “last” initial value (assuming consecutive initial values

are given). Also, the sum that starts at 0 should be multiplied by a constant (maybe 1),

the one that starts at 1 should be multiplied by a constant (maybe 1) times x, and in

general each sum that starts at t should be multiplied by a constant (maybe 1) times xt.

(5) By adding the “missing” (first few) terms, and subtracting them off outside the sum

(don’t forget to multiply by whatever is in front of the summation!), convert each sum so

that it goes from 0 to infinity. That is, do algebra so that each sum involving a term of

the recurrence equals g(x). If the recurrence is non-homogeneous, you may need to do the

same sort of thing to convert the sum(s) arising from the non-homogeneous term(s) into

known sums.

(6) Collect all terms involving g(x) on the LHS, factor g(x) out (if possible), then divide

(or do whatever algebra is needed), to obtain a closed form for the generating function.

You might have noticed that the characteristic equation for the recurrence in Example

2 is x3 − x2 − 8x + 12, while the denominator for the generating function is 1 − x −
8x2 − 12x3. It is always true that if the characteristic equation for a LHRRWCC is

a0x
k + a1x

k−1 + · · · + ak−1, then the denominator for (some form of) the generating

function is a0 +a1x+a2x
2 + · · ·+ak−1x

k. This follows from the general method described

above.

Once you have the generating function, you can factor the denominator and (hopefully)

use partial fractions to write it as a sum of multiples of known generating functions. By

finding the coefficient of xn in each summand, you get a formula for an.

Example 3. Solve an = −3an−1 + 10an−2 + 3 · 2n, n ≥ 2 with initial conditions a0 = 0
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and a1 = 6.

Let g(x) =
∑∞

n=0 anxn

= a0 + a1x +
∑∞

n=2 anxn

= 0 + 6x +
∑∞

n=2(−3an−1 + 10an−2 + 3 · 2n)xn

= 6x − 3x
∑∞

n=2 an−1x
n−1 + 10x2

∑∞
n=2 an−2x

n−2 + 3
∑∞

n=2 2nxn

= 6x − 3x
∑∞

k=1 akxk + 10x2
∑∞

k=0 akxk + 3
∑∞

n=2 2nxn

= 6x − 3x
(∑∞

k=1 akxk
)
− (−3x)(0) + 10x2

∑∞
k=0 akxk + 3

∑∞
n=2 2nxn

= 6x − 3xg(x) + 10x2g(x) + 3
(∑∞

n=0 2nxn
)
− 3(1 + 2x)

Therefore, g(x)(1 + 3x − 10x2) = −3 + 3
1−2x , so g(x) = −3

1+3x−10x2 + 3
(1−2x)(1+3x−10x2)

= −3 1
(1+5x)(1−2x) + 3 1

(1−2x)2(1+5x) = 3 1−(1−2x)
(1−2x)2(1+5x) = 6x

(1−2x)2(1+5x) .

We need to expand the RHS using partial fractions.
6x

(1−2x)2(1+5x) = A
1−2x + B

(1−2x)2 + C
1+5x = A(1−2x)(1+5x)+B(1+5x)+C(1−2x)2

(1−2x)2(1+5x) .

Thus 6x = A(1 − 2x)(1 + 5x) + B(1 + 5x) + C(1 − 2x)2. Expanding the RHS and then

equating coefficients of like powers of x yields:

A + B + C = 0, 3A + 5B − 4C = 6, −10A + 4C = 0

The solution is A = −12/49, B = 6/7, C = −30/49. Thus, g(x) = (−12/49) 1
1−2x +

(6/7) 1
(1−2x)2 + (−30/49) 1

1+5x , so an = (−12/49)2n + (6/7)
(
n+1

1

)
2n − (30/49)(−1)n5n =

(−12/49)2n + (6/7)(n + 1)2n + (30/49)(−1)n+15n.

Using generating functions to solve counting problems. In showing that (1 + x +

x2 + · · ·)k =
∑∞

n=0

(
n+k−1

k−1

)
xn we argued that the coefficient of xn equals the number of

ways of writing n as a sum of k integers, each of which occurs as an exponent in one of

the factors on the LHS. Stated slightly differently,
(

1
1−x

)k is the generating function for

the number of ways to write n as a sum of k non-negative integers.

Continuing this line of reasoning, the generating function for the number of ways to write

n as a sum of five odd integers would be (x + x3 + x5 + · · ·)5 = [x(1 + x2 + x4 + · · ·)]5

=
(

x
1−x2

)5. (Think about what happens with the exponents when the LHS is multiplied

out.) Similarly, the generating function for the number of ways to write n as a sum of two

odd integers and an even integer would be (x+x3 +x5 + · · ·)2(1+x2 +x4 + · · ·) = x2

(1−x)3 .

In general, suppose you want the generating function for the number of ways to write n

as an (ordered) sum of k terms, some of which may be restricted (as in being odd, for

example). Then the generating function will be a product of k factors each of which is

a sum of powers of x. The exponents of x in the first factor will be the possibilities for
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the first term in sum (that adds to n), the exponents of x in the second factor will be the

possibilities for the second term in the sum, and so on until, finally, the exponents in the

k-th term are the possibilities for the k-th term in the sum.

Remember that x0 = 1, so a factor has a 1 if and only if zero is one of the possibilities

for the corresponding term in the sum. Similarly for x1 = x, and so on.

Example 4. Determine the generating function for the number of ways to distribute a

large number of identical candies to four children so that the first two children receive an

odd number of candies, the third child receives at least three candies, and the fourth child

receives at most two candies.

Suppose the number of candies distributed is n. Then we are looking for the generating

function for the number of ways to write n as a sum of four integers, the first two of which

are odd, the third of which is at least 3, and the fourth of which is at most 2. Following

the reasoning from above, the generating function is a product of four factors, and the

exponents of x in each factor give the possible values for the corresponding term in the

sum. Thus, the generating function is (x + x3 + x5 + · · ·)2(x3 + x4 + · · ·)(1 + x + x2)

=
(

x
1−x2

)2 x3

1−x (1 + x + x2).

Once you have the generating function for the number of ways to do something, you

can apply the methods you know (i.e. write the generating function as a sum of known

generating functions) to determine the cooefficient of xn, and hence the number of ways.

Example 4 continued. (This gets a touch ugly at the end, but it is a good illustration

of the methods, so hang with it.) Use the generating function to determine the number of

ways.

The generating function is

g(x) =
(

x
1−x2

)2 x3

1−x (1+x+x2) = (x2+x3+x4)
(

1
(1−x2)2(1−x)

)
= (x2+x3+x4)

(
1

(1+x)2(1−x)3

)
.

An exercise in partial fractions shows that:
1

(1+x)2(1−x)3 = (1/8)
(

1
1−x

)2 + (3/16)
(

1
1−x ) + (1/4)

(
1

1+x

)3 + (1/4)
(

1
1+x

)2 + (3/16)
(

1
1+x

)
.

Since these are all known generating functions, the coefficient of xn in this expression (which

is not g(x)) is (1/8)+(3/16)(n+1)+(1/4)(−1)n
(
n+3−1

3−1

)
+(1/4)(−1)n(n+1)+(3/16)(−1)n.

We need the coefficient of xn in g(x), which equals 1
(1+x)2(1−x)3 multiplied by (x2+x3+x4).

Thus, the coefficient of xn in g(x) is the sum of the coefficient of xn−2 in 1
(1+x)2(1−x)3 , the

coefficient of xn−3 in 1
(1+x)2(1−x)3 , and the coefficient of xn−4 in 1

(1+x)2(1−x)3 . This equals

a + b + c, where
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a = (1/8) + (3/16)(n − 1) + (1/4)(−1)n−2
(
n
2

)
+ (1/4)(−1)n−2(n − 1) + (3/16)(−1)n−2,

b = (1/8) + (3/16)(n − 2) + (1/4)(−1)n−2
(
n−1

2

)
+ (1/4)(−1)n−3(n − 2) + (3/16)(−1)n−3,

c = (1/8) + (3/16)(n − 3) + (1/4)(−1)n−4
(
n−2

2

)
+ (1/4)(−1)n−4(n − 3) + (3/16)(−1)n−4.

No doubt this expression can be simplified.

Example 5. Use generating functions to find bn, the number of ways that n ≥ 0 identical

candies can be distributed among 4 children and 1 adult so that each child receives an odd

number of candies, and the adult receives 1 or 2 candies.

Following the method outlined above, the generating function is

g(x) = (x + x3 + x5 + · · ·)4(x + x2) =
(

x
1−x2

)4(x + x2)

= (x5 + x6)
∑∞

k=0

(
k+4−1

3

)
x2k

=
∑∞

k=0

(
k+3
3

)
x2k+5 +

∑∞
k=0

(
k+3
3

)
x2k+6

The first sum contains all terms with odd exponents, and the second sum contains all

terms with even exponents. Thus, if n ≤ 4, bn = 0. If n ≥ 5 and odd, bn =
(
n+1/2

3

)
(let

n = 2k + 5 in the first sum). If n ≥ 6 and even, bn =
(
n/2
3

)
(let n = 2k + 6 in the second

sum). These cases can all be described by the single expression bn =
(�n/2�

3

)
.

Example 6. In a certain game it is possible to score 1, 2, or 4 points on each turn. Find

the generating functions for the number of ways to score n points in a game in which there

are at least two turns where 4 points are scored.

Here we are looking for the number of ways to write n as an ordered sum of three terms.

The first term represents the number of points obtained from turns where 1 point was

scored. The second term represents the number of points obtained from turns where 2

points were scored (and thus is a multiple of 2). The third term represents the number of

points obtained from turns where 4 points were scored (and thus is a multiple of 4, and

at least 8). Thus, the generating function will be a product of three factors, where the

exponents in each factor correspond to the possibilities just discussed. Therefore,

g(x) = (1 + x + x2 + · · ·)(1 + x2 + x4 + · · ·)(x8 + x12 + x16 + · · ·) = 1
1−x

1
1−x2

x8

1−x4 .

If you want an exercise in partial fractions, continue with Example 6 and determine the

number of ways by writing g(x) as a sum of known generating functions and finding the

coefficient of xn. This involves a 6×6 linear system (unless you makle an astute observation

that is eluding me right now).
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