A Proof of Pythagoras Theorem

To prove that $a^2 + b^2 = c^2$

Take 3 identical copies of this right-angled triangle and arrange like so.

Bhaskara's Proof (Indian Mathematician 12th century)

Bhaskara's approach is to partition the square on the hypotenuse into 4 right-angled triangles that are congruent to the original, plus a central square.

To prove that
$$a^2 + b^2 = c^2$$

 $c^2 = 4 \times \frac{1}{2} ab + (b-a)^2$
 $c^2 = 2ab + b^2 - 2ab + a^2$
 $c^2 = a^2 + b^2$ (QED)
MATHS 4 ALL (VSDP)

President James Garfield's Proof(1876)

To prove that $a^2 + b^2 = c^2$

We first need to show that the angle between angle \times and angle y is a right angle.

•This angle is 90° since x + y = 90° and angles on a straight line add to $180° \checkmark$

Area of trapezium

$$=\frac{1}{2}(a+b)(a+b)=\frac{1}{2}(a^2+2ab+b^2)$$

Area of trapezium is also equal to the areas of the 3 right-angled triangles.

$$=\frac{1}{2}ab+\frac{1}{2}ab+\frac{1}{2}c^2$$

So

$$\Rightarrow \frac{1}{2} (a^2 + 2ab + b^2) = \frac{1}{2} ab + \frac{1}{2} ab + \frac{1}{2} c^2$$

$$\Rightarrow a^2 + 2ab + b^2 = 2ab + c^2$$

$$\Rightarrow$$
 $a^2 + b^2 = c^2$

QED

Take 1 identical copy of this right-angled triangle and arrange like so

John Wallis Proof: English Mathematician (1616-1703)

Draw CD perpendicular to AB

Angle BDC is a right angle (angles on a straight line)

Angle BCD = α since $\alpha + \beta + 90^{\circ} = 180^{\circ}$ (from large triangle)

Angle ACD= β = since $\alpha + \beta + 90^{\circ}$ = 180° (from large triangle)

All 3 triangles are similar since they are equiangular

×

Comparing corresponding sides in 1 and 2:

$$\frac{a}{c} = \frac{c}{a} \Rightarrow a^2 = c^2 - cx$$

Comparing corresponding sides in 1 and 3:

$$\frac{b}{x} = \frac{c}{b} \Rightarrow b^2 = c$$

adding equations gives: $a^2 + b^2 = c^2$

Euclid's Proof

To Prove that area of square BDEC = area of square ABFG + area of square ACHK

- •Construct squares on each of the 3 sides (1.46)
- Draw AL through A parallel to BD (1.31)
- ·Draw Lines AD and FC
- •CA and AG lay on the same straight line (2 right angles)(1.14)
- •In triangles ABD and FBC AB = FB (sides of the same small square)
- •BD = BC (sides of the same larger square)
- ·Also included angles are equal (right angle + common angle ABC)
- .: triangles are congruent (SAS) and so are equal in area (1.4)
- •Rectangle BDLM = 2 x area of triangle ABD (1.41)
- •Square ABFG = $2 \times \text{area of triangle FBC (1.41)}$
- :: Area of rectangle BDLM = Area of square ABFG

Draw lines BK and AE

- •BA and AH lay on the same straight line (2 right angles (1.14)
- •In triangles ACE and BCK, AC = CK (sides of smaller square)
- ·BC = CE (sides of larger square)
- ·Also included angles are equal (right angle + common angle ACB)
- ·: triangles are congruent (SAS) and so are equal in area (1.4)

Rectangle MLCE = $2 \times \text{area of triangle Ace (1.41)}$

Square ACHK = 2 area of triangle BCK (1.41)

... Area of rectangle MLCE = Area of square ACHK

MATHS 4 ALL (VSD)

Area of square BDEC = area of square ABFG + area of square ACHK. QED

Euclid's Proof of the Converse of Pythagoras' Theorem (I.48)

To prove that: If the square on the hypotenuse is equal to the sum of the squares on the other two sides then the triangle contains a right angle.

The Proof

To prove that angle α is a right angle Given $c^2 = a^2 + b^2$

- ·Draw CE perpendicular to BC
- •Construct CD equal to CA and join B to D

Applying Pythagoras' Theorem to triangle BCD

$$BD^2 = BC^2 + DC^2 (I.47)$$

$$\Rightarrow$$
BD² = a^2 + b^2 (since BC = a and DC = b)

$$\Rightarrow$$
BD² = c² (since a² + b² = c² given)

$$\Rightarrow$$
BD = c

 \Rightarrow Triangles BCD and BCA are congruent by (SSS) : angle α is a right angle QED